vai al contenuto della pagina vai al menu di navigazione
 

Membranes for energy applications

Keywords: proton exchange membrane fuel cells (PEMFC), ionomers, hydrogen, palladium membranes, Carbon Capture
Fig. 1. Rubotherm Magnetic Suspension Balance. (Author M. Giacinti Baschetti)
Fig. 2. CO2/CH4 separation performance for MFCpolyvinylamine based facilitated transport membranes at different RH (Author M. Giacinti Baschetti)

The activity focuses on the study of novel techniques for the processing of classical and new energy carriers (Natural gas - hydrogen - biogas) and the optimization of new energy production devices (fuel cells).

Palladium Membranes for Hydrogen purification.
Hydrogen is one of the most promising energy carriers, due to clean combustion and possible use in fuel cells that however need high purity hydrogen to work properly. Palladium membranes have high permeability and theoretically infinite selectivity towards H2 and can be used to for its purification reducing costs and improving efficiency of the whole process. The Group activity in this field is aimed at testing and modelling transport of hydrogen- containing mixtures in palladium membranes, in order to design the most appropriate membranes and modules in a real separation environment, also considering the presence of poisoning gases, such as CO and water vapour.

Ionomer Membranes for Fuel Cells.
Proton Exchange Membranes Fuel Cells are energy production devices that use hydrogen (or methanol) as fuel and polymeric membranes as electrolytes (e.g. Nafion®, Aquivion®). The membrane conductivity depends on the humidity absorbed and the study of mass transport through the membrane is essential for controlling its performance. The activity is focused at the experimental and theoretical study of fluid transport through membranes as a function of operative conditions and membrane properties, especially at temperatures above 60°C as they allow the use of alternative fuels and reduce electrode catalyst poisoning.

CO2 removal from natural gas or biogas.
The removal of Acidic gases from methane is of high importance to increase the fuel quality and prevent CO2 dispersion in the atmosphere. In addition to solution diffusion membranes reported in the gas separation membranes page, the use of facilitated transport membranes is also considered in the Diffusion in polymer Group, which possess carrier sites able to selectively transport CO2 across the membrane thus improving both selectivity and permeability at the same time. The use of filler such as carbon nanotube and nanocellulose (MFC) has been also considered in order to increase membranes strength and operability in different operative condition.

Main publications

Venturi, D., Ansaloni, L., & Giacinti, M. (2016). Nanocellulose Based Facilitated Transport Membranes for CO 2 Separation. Chemical Engineer Transaction, 47, 349–354.

Ansaloni, L., Zhao, Y., Jung, B. T., Ramasubramanian, K., Baschetti, M. G., & Ho, W. S. W. (2015). Facilitated transport membranes containing amino-functionalized multi-walled carbon nanotubes for high-pressure CO2 separations. Journal of Membrane Science, 490, 18–28.

Ferrari M.C., Catalano J., Giacinti Baschetti M., De Angelis M.G., Sarti G.C. (2012). FTIR-ATR Study of Water Distribution in a Short-Side-Chain PFSI Membrane. Macromolecules 45, 1901-1912.

Catalano J., Myezwa T., De Angelis M.G., Giacinti Baschetti M., Sarti G.C. (2012). The effect of relative humidity on the gas permeability and swelling in PFSI membranes. International Journal of Hydrogen Energy 37, 6308 - 6316.

Catalano, J., Giacinti Baschetti, M., Sarti, G. C. (2011). Influence of water vapor on hydrogen permeation through 2.5 μm Pd–Ag membranes. International Journal of Hydrogen Energy 36, 8658- 8673.

Catalano, J., Giacinti Baschetti, M., & Sarti, G. C. (2010). Hydrogen permeation in palladium-based membranes in the presence of carbon monoxide. Journal of Membrane Science 362(1-2), 221-233.

Hallinan DT, De Angelis MG, Giacinti Baschetti M, Sarti GC, Elabd Yossef A. (2010). Non-Fickian Diffusion of Water in Nafion, Macromolecules 43, 4667-4678.

Catalano J., Giacinti Baschetti M., De Angelis M.G., Sarti G.C., Sanguineti A., Fossati P. (2009). Gas and water vapor permeation in a short-sidechain PFSI membrane. Desalination 240, 341-346.

Catalano, J., Giacinti Baschetti, M., Sarti, G. C. (2009). Influence of the gas phase resistance on hydrogen flux through thin palladium–silver membranes. Journal of Membrane Science, 339(1-2), 57-67.

Pizzi, D., Worth, R., Giacinti Baschetti, M., Sarti, G. C., Noda, K.-ichi. (2008). Hydrogen permeability of 2.5μm palladium–silver membranes deposited on ceramic supports. Journal of Membrane Science 325(1), 446-453.

D. Gorri, MG De Angelis, M Giacinti Baschetti, GC Sarti (2008). Water and methanol permeation through short-side-chain perfluorosulphonic acid ionomeric membranes, Journal of Membrane Science 322, 383-391.

M.G. De Angelis, S. Lodge, M. Giacinti Baschetti, G.C. Sarti, F. Doghieri, A. Sanguineti, P. Fossati (2006). Water sorption and diffusion in a shortside- chain perfluorosulfonic acid ionomer membrane for PEMFCS: effect of temperature and pretreatment. Desalination 193, 398-404.

Research projects

H2020 project: NanoMEMC2: Nanomaterial based membranes and processes for improved pre/post combustion Carbon Capture. (2016-2019)

FISR DM 17/12/2002 “Idrogeno puro da gas naturale mediante reforming a conversione totale ottenuta integrando reazione chimica e separazio-ne a membrana. Funded by the Italian govern-ment through the “Contributo del Fondo Integra-tivo Speciale Ricerca” (2005-2009).

Sviluppo di una filiera integrata dell’idrogeno per lo sfruttamento delle fonti energetiche alternative e la decarbonizzazione. Funded within the "Accordo Programma Quadro tra il Ministero dello Sviluppo Economico, il Ministro dell'Università e della Ricerca e la Regione Emilia-Romagna - II Integrativo - Sostegno allo sviluppo dei laboratori di ricerca nei campi della nautica e dell’energia per il Tecnopolo di Ravenna” (2012-2013).

Funded Collaboration with Ausimont (2000-2005) and Solvay-Solexis (2005-2009).