MULTIPHYSICS AND COUPLED PROBLEMS

RESEARCH GROUP: Giovanni Castellazzi, Camilla Colla, Stefano de Miranda, Luisa Molari, Francesco Ubertini

KEYWORDS: fluid-structure interaction, coupled deformation-diffusion, phase transitions, salt attack, piezoelectricity

This research line encompasses the development of ad-hoc numerical formulations for the analysis of several coupled problems.

In particular, tools are developed for:

- numerical simulation of wind tunnel tests by means of LES (Fig. 1) and generation of synthetic turbulence;
- dynamic structural response to the wind action and extraction of Equivalent Static Wind Loads;
- assessment of the aeroelastic stability of structures by means of Computational Fluid Dynamics;
- simulation of phase transition in metals using phase field model with applications to steel and shape memory alloys (Fig. 2);
- simulation of the mechanically driven mass diffusion in deformable solids, aimed at predicting the so-called hydrogen embrittlement, which may occur in metals containing an initially uniform dilute concentration of hydrogen;
- simulation of the effect of the diffusion of moisture within the masonry on the mechanical response as well as of the effect of the mechanical degradation on the diffusion process;
- simulation of the moisture diffusion and salt transport in porous media with attention to the stress and damage prediction (Fig. 3).

![Fig. 1. Instantaneous vorticity contours around a low-rise building (Patruno).](image1)

![Fig. 2. Simulation of tensile test in NiTi shape memory alloy, stress-strain prediction and phase morphology at different stages (Molari).](image2)

![Fig. 3. Water uptake on two-storey wall: water content distribution for (a) virgin masonry wall, (b) a damage masonry wall (Castellazzi).](image3)
MAIN PUBLICATIONS


RESEARCH PROJECTS


CONTACTS

stefano.demiranda@unibo.it
luisa.molari@unibo.it